# Idaho National Laboratory

#### Experimental Design

ATR NSUF User Week 2009
Experimenter Course

S. Blaine Grover, Idaho National Laboratory June 4, 2009



#### Presentation Agenda

- Experiment Types
- Irradiation Requirements
- Irradiation Environments
- Flux Tailoring
- Effluent Monitors
- Miscellaneous Issues
- Experiment Examples





#### **Experiment Types**



#### Static Capsules

- Many are non-instrumented (e.g. radioisotopes)
- Can include passive instrumentation (flux wires, melt wires)
- Performed in reflector positions or flux traps
- Utilized for isotopes, structural materials, or fuel
- Lengths up to 1.2 m & diameters up to 12.7 cm
- Usually the least expensive testing technique
- Six month lead time





#### Instrumented Lead Experiments

- On-line instrument measurements (typically temperature)
- With or without active temperature control
  - Range: 250 -1000 +/- 5 °C
- Utilized in reflector positions or flux traps
- Lengths up to 1.2 m
   diameters up to
   12.7 cm
- Structural materials, cladding, fuel
- One year lead time





#### Pressurized Water Loop Tests

- Five flux trap positions currently have pressurized water in-pile loop tests (1 large diameter, 4 standard diameter)
- Sixth pressurized loop test will soon be installed
- Each loop has its own temperature, pressure, flow & chemistry control systems
- Structural materials, cladding, fuel
- Flux tailoring and transient testing capabilities
- Up to two year lead time for new test programs



#### Typical Pressurized Water Loop Layout





#### **Experiment Requirements**



#### Irradiation Requirements

- Specimen size & shape
  - Standard test specimen
  - Minimum grains across specimen
- Desired fluence
  - Fast neutron damage level
  - Fuel
    - Burn-up level
    - Acceleration factor
  - Fast/thermal ratio
- Desired irradiation temperatures
  - Room for gas gap to provide adequate insulation
  - Control/monitoring
    - Active gas mixtures & thermocouples
    - Passive calculations with melt wires, silicon carbide, etc.



#### Irradiation Environments

- Inert gas temperature control selections
  - Insulator gas
    - Argon good temperature range but activation issue
    - Neon less temperature range but very limited activation fission gas monitoring
- Non-inert gas
  - Utilize different temperature control gases
  - Utilize second gas boundary and specific cover gas
- Thermal Bonding liquid metal
  - Reduced temperature gradients in specimens
  - Smaller gas gaps necessary to achieve desired temperatures
- Pressurized water
  - Chemistry control
  - Flow
    - Loop
    - Stagnant water capsule facility
    - Test reactor PCS



#### Flux Tailoring

- Irradiation position
  - Close to fuel to increase fast fluence
  - Flux trap or reflector to increase thermal
- Fixed neutron absorption shroud
  - Integral with encapsulation design
  - More choices of absorption material if isolated from coolant
  - Consumable (e.g. Boron)
- Removable/replaceable neutron absorption shroud
  - Solid chemistry compatibility with reactor coolant
  - Gas shroud He3
- Booster fuel





#### Effluent Monitors

- Fission product monitors
  - Gross gamma detector to identify individual failures (particle fuel)
  - Spectrometer to measure concentration of specific isotopes
- Other monitor options
  - Gas chromatograph for cover gas Magnox graphite oxidization
  - Monitor radioactive gas (i.e. tritium) for on-line indication of specimen performance





#### Miscellaneous Issues

- Material Selection
  - Compatibility with specimens or irradiation environment (particle fuel, catalyze reactions, etc.)
  - Thermal issues (expansion stresses & clearances, service & design temperatures, brazes)
  - Neutronic or activation effects (flux variations, heating, waste disposal, etc.)
  - Design code requirements
- Marking or features
  - Specimens or specimen holders for identification in hot cell
  - On capsules to provide orientation for installation in core & PIE
  - Cut lines for disassembly of test trains/capsules in hot cell
- Assembly & disassembly
  - Walk through assembly of capsule & test train
  - Consider disassembly in a hot cell with manipulators



#### **Experiment Examples**



#### Magnox Generation Graphite Irradiation

#### Experiment Purpose

Extend data base on Magnox gas reactor graphites to higher density losses and fast fluence damage levels to support life extension of Magnox power stations in UK



#### Magnox Graphite Irradiation

- Standard Magnox graphite PIE specimens (Ø12 mm x 6 mm thick)
- On-line temperature indication and control utilized ITV in CFT
- Total nuclear heating dose of 7 x 10<sup>7</sup> joules/gram
- Fast neutron dose of 18 x 10<sup>20</sup> n/cm<sup>2</sup> (E>0.1 MeV)
- Two equal size capsules one oxidizing & one inert, minimize all other differences (e.g. mirror images about ATR core centerline)
- Measure fast and thermal neutron flux
- Inert Capsule
  - 99.996% pure helium (< 1 ppm O<sub>2</sub>)
  - Sample inlet line for O<sub>2</sub>
  - Sample inlet and exhaust line CO



#### Magnox Graphite Irradiation

(continued)

- Oxidizing capsule at typical Magnox reactor conditions
  - Specimen temperatures of 410°C at core center to 373 °C at edge of core
  - Maximize graphite surface exposed to gas flow
  - Minimize materials that affect graphite oxidation rate
  - CO<sub>2</sub>/CO/H<sub>2</sub> cover gas mixture @ 380 psi
  - Provide capability to mix pure CO<sub>2</sub> gas with a mixture of CO and H<sub>2</sub> as needed to control experiment oxidation rate
  - Utilize a gas chromatograph to measure and control the CO<sub>2</sub>/CO/H<sub>2</sub> mixture
  - Sample inlet line for O<sub>2</sub>
  - Sample inlet and exhaust line for CO, H<sub>2</sub>, and CH<sub>4</sub>.
  - Provide capability of purging system with inert (helium) gas



#### Magnox Graphite Irradiation

(continued)



Capsule Cross Section



**Vertical Section** 

## Advanced Gas Reactor (AGR) Fuel Development and Qualification Program

- Experiment program purpose is to support development of next generation Very High Temperature Reactors near term for the Next Generation Nuclear Plant
  - Provide irradiation performance data to support fuel process development
  - Support development & validation of fuel performance & fission product transport models and codes
  - Provide irradiated fuel & materials for post irradiation examination
     & safety testing
  - 8 Fuel irradiations currently planned
- Purposes of AGR-1 Experiment are:
  - Shakedown of test design prior to fuel qualification tests
  - Irradiate early fuel from laboratory scale processes



#### AGR-1 Fuel & Irradiation Requirements

- TRISO-coated, Uranium Oxycarbide (UCO)
- Low Enriched Uranium (LEU), <20% enrichment</li>
- Particle dimensions
  - 350 μm diameter fuel kernels
  - 780 µm diameter particles
- Burn-up -> Fissions per Initial Metal Atom (FIMA)
  - 18% FIMA (172.8 GWd/t) goal for all compacts
  - 14% FIMA (134.5 GWd/t) minimum
- Fast neutron fluence
  - Minimum > 1.5 x 10<sup>25</sup> n/m2 (E>0.18 MeV)
  - Maximum < 5 x 10<sup>25</sup> n/m2 (E>0.18 MeV)



Fuel Particles



### AGR-1 Fuel & Irradiation Requirements (Continued)

- Fuel compact details
  - Right circular cylinder
  - 12.4 mm diameter
  - 25.4 mm length
  - ~4,150 fuel particles/compact
  - − ~0.9 g U/compact
- Fuel compact irradiation temperature requirements:
  - Time-average, volume-average = 1150 +30/-75 °C
  - Time-average peak = 1250 °C
  - Instantaneous peak = 1400 °C



AGR-1 Fuel Compact



#### AGR-1 Experiment Location in ATR Core



ATR Core Cross Section



- AGR Program will utilize the large B positions (38mm diameter) in ATR
  - AGR-1 in east large B position (B-10)
- Large B position flux rate
  - Spectrum very similar to NGNP
  - Modest acceleration 2 years in ATR simulate 3 year lifetime for NGNP fuel

Utilize center vertical portion of core where axial flux is most uniform



#### AGR-1 Capsule Design Features

- Fuel stacks
  - 3 fuel compacts/level
  - 4 levels/capsule
  - Total of 12 fuel compacts/capsule
  - Surrounded by nuclear grade graphite
- Thru tubes
  - Provide pathway for gas lines & TC's between capsules
  - Maintain temperature control gas jacket







AGR-1 Capsule Design Features

(continued)

- Fast and thermal flux wires
  - Vanadium/Cobalt for thermal
  - Niobium for epithermal (0.18 MeV threshold)
  - Iron for fast (1 MeV threshold)
- Neutron shrouds
  - Boronated Graphite
  - Hafnium shroud toward core
  - SST shroud away from core to increase flux rate to stack 2





AGR-1 Capsule Vertical Section

#### AGR-1 Test Train Design Features

- 6 Capsules in test train
  - Capsules are 35 mm in diameter & 150 mm in length
  - Individual temperature control and fission product monitoring
- Thermocouples
  - Mixture of commercial Type N and INL developmental Mo-Nb
  - 3 TC's in capsules 2 through 5
  - 2 TC's in capsule 1 (space in thru tubes)
  - 5 TC's in capsule 6 (no thru tube issues)
- Melt wires for temperature back-up for TCs

Idaho National Laboratory



AGR-1 Test Train
Vertical Section

#### AGR-1 Experiment Flow Diagram





#### **AGR-1 Fission Product Monitor**

- Individual FPM for each capsule
- Spectrometer
  - Identify & quantify individual fission gases
  - Liquid Nitrogen (LN) cooled HPGe detector
- Gross gamma detector
  - Identify individual particle events up to and including the 250<sup>th</sup> particle failure
  - Provide release timing
  - Nal crystal scintillation detector
- Seventh FPM to serve as on-line back-up spare
- Grab sample capability



**Fission Product Monitor** 



## Advanced Graphite Capsule (AGC) Experiment Purpose



AGC-1 Experiment in ATR Reactor Vessel



- Nuclear grade graphites used in previous gas reactors are no longer available due to loss of feedstock
- AGC-1 is the first of six graphite irradiations to obtain irradiation creep data
- Experiments will be conducted at:
  - 600, 900 and 1200°C
  - 4 to 7 dpa fast neutron damage levels (5.5 and 9.6 x 10<sup>21</sup> n/cm<sup>2</sup> for E > 0.1 MeV)
  - Compressive loads of 2 to 3 ksi (14 to 21 MPa)
- AGC-1 will be irradiated up to 7 dpa at 600°C with compressive loads of 2 to 3 ksi (14 to 21 MPa)

#### AGC-1 Experiment Location



ATR Core Cross Section

- AGC-1 will be irradiated in the South Flux Trap (SFT) of ATR starting in February 2010.
  - Volume maximizes number of graphite specimens, stacks/channels, loads, and combinations
  - Flux rate minimizes irradiation time to meet NGNP program schedule
  - Experiment will be rotated to minimize flux gradient across experiment diameter



#### AGC-1 Graphite Specimens

- Specimen sizes
  - Large Ø 1/2" (12.5 mm) x 1" (25.4 mm) tall
  - Small Ø  $\frac{1}{2}$ " (12.5 mm) x  $\frac{1}{4}$ " (6.4 mm) tall
- 6 Perimeter Stacks loaded/unloaded
  - 15 Large and 2 small specimens per stack compressively loaded above core center
  - 14 Large and 12 small specimens per stack unloaded below core center
- Center Stack (all unloaded)
  - 172 Small specimens



Graphite Specimens

**Core Centerline** 

Half Size Unloaded Specimens

AGC-1 Specimen Stack

Loaded Specimens

Full Size Unloaded Specimens



Compressive Load Push Rod

#### AGC-1 Test Train Design Features

- 6 specimen stacks around capsule perimeter with compressive load on upper half of stack
- 7<sup>th</sup> specimen stack in center without compressive load
- Graphite specimen holder to contain graphite specimen stacks and TCs
- 12 TC locations with positions located throughout core height
- Flux wires in alignment pins between graphite specimens in peripheral stacks
- SiC temperature monitors in center of specimens in center stack
- Heat shield between graphite and capsule boundary to limit radiation heat transfer





AGC-1 Capsule Cross Section

#### AGC-1 Compressive Load System

- 6 Pneumatic rams above core to provide compressive load on specimens in peripheral stacks during reactor operation
- 3 Different compressive loads on the peripheral graphite stacks
  - 2 stacks with 2 ksi (14 MPa) compressive load
  - 2 stacks with 2.5 ksi (17 MPa) compressive load
  - 2 stacks with 3 ksi (21 MPa) compressive load
- Load cells located between pneumatic rams and push bars to monitor specimen load



AGC-1 Test Train



#### AGC-1 Compressive Load System (continued)







- 6 Gas bellows below core to vertically lift specimen stacks during reactor outages to verify load conditions
- LVDT Position indicators attached to bottom of push bars to verify specimen movement during outages
- Loads monitored and controlled using same ATR Capsule Distributed Control System (DCS) used to control experiment temperature



#### AGC-1 Progress & Status



**Attaching Heat Shield** 

- Assembly, Fabrication & Operational Mock-ups tested in 2007
- Final design reviews completed in September 2008
- Test train assembly & experiment safety analysis approved in April 2009
- Experiment scheduled to be inserted and initiate irradiation August 2009 complete irradiation in late 2010





AGC-1 specimen holder with thermal shield completed



#### MOX Fuel Irradiation

Purpose of the experiment was to obtain Mixed Oxide Fuel (MOX) fuel and cladding irradiation performance data on fuel pins made with weapons grade plutonium.

- Cooperative project between 3 DOE National Laboratories
  - Oak Ridge National Laboratory (PM, design, analysis, PIE)
  - Los Alamos National Laboratory (fuel fabrication)
  - Idaho National Laboratory (design, analysis, irradiation)



#### MOX Fuel Irradiation Requirements

- PWR temperature at surface of fuel pin cladding
- Linear heat rate requirements
  - 6 KW/ft minimum
  - 10 KW/ft maximum
- Fuel burn-up levels
  - 8 GWd/t minimum
  - 50 GWd/t maximum
- Maintain orientation of irradiation basket in relation to ATR core center
- Maintain orientation of fuel pins relative to ATR core center



#### **MOX Test Fuel Pellets**







Test Fuel Employed Typical PWR Pellet Dimensions with Normal Dish and Chamfer

#### MOX Fuel Capsule Cross Section

#### **MOX Irradiation Test Capsule**



- Capsule designed to ASME Section III Class 1 requirements
- Small (0.001") insulating gas gap between fuel pin and capsule provided desired temperatures
- Zircaloy fuel pin outer surface protected from
  - Corrosion
  - Hydrogen pickup (hydrides)



## MOX Fuel Capsule Design Features

- Zircaloy fuel pin
  - 15 MOX fuel pellets
  - Fission gas chamber
  - Spring to limit pellet movement
- Stainless steel Capsule
  - Gas chambers for fuel pin failure & welding caps
  - Locating tab on top & bottom heads
  - Threaded hole in capsule head for retrieval from basket





## MOX Fuel Basket Design Features

- Designed for Small (1.5") I irradiation position
- 3 Capsules/level with 3 levels in basket = 9 capsules in basket
- Centers capsules vertically in ATR Core
- Designed with & without neutron shroud
- Anti-rotation device on bottom of basket
- 3 flux wire positions between capsule positions





#### MOX Fuel Experiment Locations



ATR Core Cross Section



- Irradiation initiated in NE small I position (I-21) in basket with Inconel shroud
- As-Run analysis performed to track fuel burn-up
- Basket changed to all aluminum basket as fuel depleted
- Experiment moved to higher power location in SE small I position (I-22) as fuel continued to deplete
- Capsules were "shuffled" vertically & horizontally in basket locations during reactor outages

#### MOX Fuel Capsule Burn-up Levels

| Irradiation Phase  | Date<br>Completed | Effective Full Power Days | Capsules<br>Withdrawn | Burnup<br>GWd/t |
|--------------------|-------------------|---------------------------|-----------------------|-----------------|
| I                  | Sept. 13, 1998    | 154.9                     | 1 and 8               | 8.8             |
| II                 | Sept. 12, 1999    | 227.7                     | 2 and 9               | 21.0            |
| III Part 1         | July 23, 2000     | 232.4                     | 3 and 10              | 30.2            |
| III Part 2*        | Jan. 14, 2001     | 113.1                     | _                     | _               |
| IV Part 1          | March 9, 2002     | 289.1                     | 4 and 13              | 39.9            |
| • IV Parts 2 and 3 | April 18, 2004    | 443.7                     | 6 and 12              | 50.1            |
|                    | •                 |                           | 5                     | 49.5            |

<sup>\*</sup>Phase III Part 2 provided catch-up irradiation for capsules 5, 6, and 12 only.



## Thank you for your attention Questions?

